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We analyze the form of the fermionic propagator for two-dimensional fermions interacting with massless
overdamped bosons. Examples include a nematic and Ising ferromagnetic quantum-critical points and fermions
at a half-filled Landau level. Fermi-liquid behavior in these systems is broken at criticality by a singular
self-energy, but the Fermi surface remains well defined. These are strong-coupling problems with no expansion
parameter other than the number of fermionic species, N. The two known limits, N�1 and N=0, show
qualitatively different behavior of the fermionic propagator G��k ,��. In the first limit, G��k ,�� has a pole at
some �k; in the other it is analytic. We analyze the crossover between the two limits. We show that the pole
survives for all N, but at small N it only exists in a range O�N2� near the mass shell. At larger distances from
the mass shell, the system evolves and G��k ,�� becomes regular. At N=0, the range where the pole exists
collapses and G��k ,�� becomes regular everywhere.
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I. INTRODUCTION

Physical properties of fermionic systems interacting with
critical neutral fluctuations have been a focus of intense stud-
ies over the last several decades and yet remain a subject of
advanced research. Examples include fermions interacting
with a gauge field,1,2 a half-filled Landau level,2 and the
system behavior at quantum-critical points �QCP� toward
Ising-type ferromagnetism3–5 �FM� and toward a nematic
order.6–9 The latter case is an example of a Pomeranchuk-
type Fermi-surface instability of an isotropic Fermi liquid.10

In all such systems, scattering of fermions by massless
bosonic excitations leads to a nonanalytic form of the fermi-
onic self-energy ��k ,�m�. Below the upper critical dimen-
sion Dcr, ��kF ,�m� exceeds a bare i�m term in the fermionic
propagator and the system develops a non-Fermi-liquid be-
havior. At a critical point toward a nematic or an Ising fer-
romagnet, one-loop self-energy ��kF ,�m�� i�m

D/3 and Dcr
=3 �Ref. 1�. The singular behavior of the self-energy is, how-
ever, only in the frequency domain; the momentum depen-
dence of ��k ,0� remains regular: ��k ,0���k. As a conse-
quence, the Fermi surface remains well defined at kF as a
locus of singular points of G�k ,0� despite that Landau qua-
siparticles do not exist.

In two dimensions �2D�, one-loop self-energy �m
D be-

comes �m
2/3. It has long been the issue2,4,8,11,12 whether �m

2/3

form is the exact expression for a non-Fermi-liquid fermi-
onic propagator. The answer to this question is still lacking.
On one hand, the two-loop and higher-order self-energies
also scale as �m

2/3, i.e., the exponent remains the same to all
orders. On the other hand, higher-order terms are of the same
order as one-loop self-energy and it is a priori unclear what
the sum of infinite series of �m

2/3 terms yields.
The way to treat such systems in a controlled way is to

artificially extend them to N fermionic flavors and require
that the interaction with a boson conserves the flavor. At
large N, multiloop �m

2/3 self-energy terms acquire extra pow-
ers of �ln N /N�2 and the series of �m

2/3 terms converge. In this
situation, self-energy is essentially determined by the one-
loop term ��k ,�m�= i��m�2/3�0

1/3 sgn��m�, where �0 is the

internal energy scale. Accordingly, at �m�0 which we only
consider below,

G�k,�m� �
1

i�m
2/3�0

1/3 − �k

= −
1

�k
FN→��−

�m
2/3�0

1/3

�k
� ,

FN→��x� =
1

1 + ix
. �1.1�

As a function of a complex x, FN→��x� has a simple pole at
x= i. Because of the pole, real space/time propagator G�r , t�
is long ranged and decays by a power law, as G�r , t=0�
�1 /r2 and G�vFt�r��1 / �t�r� �see Appendix A�.

Another solvable limit is N=0. In this case the curvature
of the 2D Fermi surface scales out, the system behavior be-
comes effectively one dimensional, and can be obtained by
bosonization. The Green’s function at N=0 has been ob-
tained by Ioffe and co-workers.2,13 It is still given by Eq.
�1.1�, but the functional form of FN=0�x� is fundamentally
different: FN=0�x� is analytic in any finite region in the upper
half plane of x and becomes singular only at x=�. Because
the pole is absent, G�r , t� is now short ranged and at vFt
�r scales as G�r , t�� �1 / t�r	exp�−ar / t2/3	, where a is a di-
mensional prefactor.

Different behaviors of FN�x� at large N and at N=0 raise
the question which of the two forms �if any� describes sys-
tem behavior in the physical case of N=1. Altshuler et al.2

conjectured that the N=0 case is special and the system be-
havior at any N�0 is qualitatively the same as for large N,
i.e., the pole in FN persists for all N and only vanishes at
N=0. On the contrary, Lawler et al.8 argued that exponential
behavior of G�r , t� survives at finite N. Chubukov and
Khveshchenko12 argued that the curvature of a 2D Fermi
surface is relevant for any N�0, and G�r , t� decays by a
power law once N�0. However, the calculations in Ref. 12
are approximate and did not yield the same G�r , t=0�
�1 /r2 as at N→�.

In this paper, we analyze this issue in detail by performing
loop expansion at small N. We find, in agreement with the
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conjecture by Altshuler et al.2 that the pole in the Green’s
function exists at any finite N and real-space equal-time
Green’s function G�r , t=0� decays by a power law as 1 /r2.
The way the pole disappears at N→0 is, however, somewhat
counterintuitive. Naively, one could expect that the residue
of the pole ZN gradually vanishes as N→0. We, however,
found a different behavior: the residue ZN remains O�1� at
small N, but the pole only exists in the range ���	N2, where

� = 1 −
i

x
= 1 + i

�k

�m
2/3�0

1/3 �1.2�

is the distance from the pole. Outside this range, the Green’s
function is regular and the same as at N=0. At N→0, the
range collapses and the Green’s function becomes regular
even at �=0.

Below we will refer to the point where �=0 as the “mass
shell,” by analogy with a Fermi liquid. We will also assume
that deviations from �=0 are along the directions in the
complex plane of � along which � is real.

We present computational details below, but first summa-
rize our rational. As our primary goal is to study what hap-
pens at small but finite N, we cannot use bosonization, which
is only applicable at N=0, and have to rely on the diagram-
matic loop expansion. It is not guaranteed a priori that loop
expansion is useful at small N as all terms in the series are
generally of the same order and it could be the case that the
corrections are all regular near the mass shell, but the pref-
actors are arranged such that infinite series of regular O�1�
corrections to the quasiparticle residue diverge at N=0 and
destroy the pole.

We, however, found that the actual situation is different
and the pole disappears at N=0 and is still present at a finite
N not because regular series diverge �at N=0� or almost di-
verge �at N�0�, but because of a peculiar singularity in the
self-energy, whose form is different at N=0 and at finite N.
This singularity can be captured within the loop expansion.
Specifically, we find that the expansion of the self-energy �
in powers of � contains a universal term which is “nonper-
turbative” in the sense that it comes from fermions whose
energies are of order ��3/2, which are smaller than the ex-
ternal energy �. This term appears at the two-loop order and
at N=0 yields the nonanalytic contribution to the self-energy
which scales as �3/2. At a first glance, such term cannot
eliminate a pole as it is smaller than G0

−1=�. However, this
universal self-energy gets renormalized by logarithmically
divergent vertex corrections. That vertex corrections are
logarithmical at N=0 has been noticed already in Ref. 2.
Typical energies in the vertex correction diagrams are of or-
der �, and the logarithmical divergence is in the form ln �.
Series of such corrections exponentiate into the full vertex

��−a and modify the universal self-energy to �3/2
2


�3/2−2a. The exponent a=1 in the leading logarithmical
approximation �when only the highest power of the loga-
rithm is kept at any order�, but gets renormalized by O�1�
corrections beyond this approximation. We cannot find a ex-
plicitly, but a comparison to bosonization implies that a
=3 /4 in which case the fully renormalized self-energy tends

to a constant value on the mass shell, i.e., the pole in G�k ,��
disappears.

We next turn to N�0. We found that universal contribu-
tion to the self-energy does exist in this case as well, but at
the smallest ��N2 it behaves as �5 /N2 �up to extra loga-
rithms�. Because typical internal energies are still small, ver-
tex corrections are again relevant, but now ln � gets replaced
by ln N2 for ��N2, such that 
�1 /N3/2. The full universal
self-energy is then ��5/2 /N2�
2
�� /N2�5/2. As the result, the
pole survives, at the smallest �, and its residue remains
O�1�. However, �� /N2�5/2 form of the self-energy is only
valid for � /N2. At larger deviations from mass shell, the
self-energy approaches the same constant value as at N=0.
Generally, at small N, we have with logarithmic accuracy

G�k,�m� = −
1

�k
FN→0�−

�m
2/3�0

1/3

�k
� ,

FN→0�x� = FN→0��� =
1

− � + g��/N2�
, �1.3�

where g�y��y5/2 at y�1 and g�y��const at y�1.
To reiterate, our key point is that there exist a universal

nonanalytic term in the loop expansion for the self-energy. At
a finite N, this term is cast into the scaling function of � /N2,
where � is the deviation from the mass shell. At the smallest
�, it scales as �5/2�� and the pole in G�k ,�m� then sur-
vives, with the residue Z+N=O�1�. At ��N2 the self-
energy approaches a constant and the full G�k ,�m� looses the
memory about the pole. At N=0, the region where the pole
exists vanishes and the Green’s function becomes regular
even at �=0.

We also considered another example of a non-Fermi-
liquid behavior—the case of 2D fermions at the half-filled
��=1 /2� Landau level.2,14,15 In this case, the fermionic
self-energy is marginal at large N, ��k ,�m�= i
�m�ln �m�,
where 
 is a dimensionless coupling �see below�. The

fermionic propagator G�k ,�m�=−�1 /�k�F̃N�−y�, with y
=
�m�ln �m� /�k, then again has a pole at y= i. We solved

the N=0 limit by bosonization and found that F̃0�y�=e−iy,
which is obviously a regular function along imaginary y
axis. We then performed the small N analysis and found
the behavior which is similar but not equivalent to the
previous case. Namely, at the distance from the pole

�̃=1+ i�k / �
�m�ln �m���N2, the pole still exists at any finite
N, but its residue now scales as ZN�N2. At larger deviations
from the mass shell, the universal self-energy approaches a
constant and the system looses the memory about the pole.
At N=0, the range where the pole exists collapses and the

Green’s function becomes regular for all �̃.
The paper is organized as follows. In Sec. II we introduce

the model. In Sec. III we consider a 2D system at a Pomer-
anchuk QCP toward a nematic order. We present the results
for large N and briefly review bosonization results for N=0.
We then discuss universal terms in the loop expansion at N
=0 and at a finite N. In Sec. IV we present the same consid-
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eration for 2D electrons at the half-filled Landau level. In
Sec. V we present the conclusions. Some technical details
are presented in Appendixes A–C.

II. MODEL

We consider 2D fermions with a circular Fermi surface
and dispersion �k. We assume that fermions interact at low
energies by exchanging collective excitations with the static
propagator ��q�=�0 /q1+x. For nematic and Ising ferromag-
netic QCPs x=1;2–7,9 for the half-filled Landau level with
unscreened Coulomb interaction, x=0 �Refs. 2, 14, and 15�.
We will only consider interactions with charge fluctuations.
Interactions with gapless spin fluctuations require separate
treatment.3,4 The static ��q� is predominantly created by
high-energy fermions and is an input for the low-energy
model.16 The Hamiltonian of the model is given by

H = �
k,�

�kck,�
† ck,� + �

q

�0
−1�q��q�−q + g�

k,q
ck,�

† P��ck+q,��−q,

�2.1�

where the first term is the kinetic energy of fermions, the
second term is the potential energy of collective excitations
described by �, and the third term describes the interaction
between fermions and collective modes. The coupling g gen-
erally depends on momentum but can be approximated by a
constant at small momenta. P��=���

z for an Ising ferromag-
net and ��� for a nematic transition. The results are equiva-
lent in both cases and we will only consider a nematic tran-
sition.

Near a particular kF point, which for definiteness we di-
rect along x,

�k = vF��kx − kF� + ky
2/�2kF�	 . �2.2�

The second term is due to the curvature of the 2D Fermi
surface.

The interaction g appears in the perturbation theory only
in even powers, in a combination ḡ=g2�0. The dimension of
g is inverse mass 1 /m and the dimension of �0 is mk2, hence
the dimension of ḡ is energy. The model has a natural dimen-
sionless parameter 
= ḡ /EF, where EF is the Fermi energy
which we assume to be of the same order as the fermionic
bandwidth. We assume, like in earlier works,2,4,7 that 
�1.
This condition implies that interaction does not take the sys-
tem out of the low-energy domain, i.e., low-energy behavior
is well separated from the system behavior at energies com-
pared to the bandwidth.

As it is customary for the problems in which fermions
interact with their own collective modes, collective excita-
tions become Landau overdamped due to interaction with
fermions and the full dynamic susceptibility of the � field
becomes

��q,�� =
�0

���/q� + q1+x , �2.3�

where �= ḡkF / ��vF
2� �see Refs. 3 and 4�. The Landau damp-

ing can be included into the theory already at the bare level;
all one has to do is to change from a Hamiltonian description

to a description in terms of an effective action.16

The model can be extended to N�1 fermionic flavors by
adding a flavor index to fermions and keeping flavor index
intact in the interaction with the � field. This extension al-
lows one to consider large N and small N. At large N, fermi-
onic damping � scales as N and is large. Collective excita-
tions then become slow modes and their effect on fermions
becomes small in 1 /N by Migdal theorem. This is the limit
where a direct perturbative treatment is applicable. In the
opposite limit of small N, the momenta which mostly con-
tribute to the fermionic self-energy are of order N, such that
the ky

2 term in Eq. �2.2� is small by N and the curvature of the
2D Fermi surface becomes a small perturbation.2,8 Without
the ky

2 term, the fermionic dispersion becomes purely one
dimensional and the self-energy can be found by a bosoniza-
tion technique. As we said, our key goal is to analyze the
crossover between solvable large N and N=0 limits with the
aim to understand system behavior for the physical case of
N=1.

Below we consider separately the case of short-range
�screened� interaction for which ��q��1 /q2 �this is the case
of fermions interacting with quantum-critical collective exci-
tations� and the case of unscreened long-range interaction
�electrons at the half-filled Landau level� for which ��q�
�1 / �q�.

III. SHORT RANGE INTERACTION: A QUANTUM-
CRITICAL POINT

The limiting cases N→� and N=0 have been studied
before. We briefly review the existing results and go one step
further in the 1 /N expansion for large N. We then present
and discuss our results for the universal terms in the loop
expansion near the mass shell.

A. Fermionic propagator at Nš1

At large N, the results for the fermionic propagator can be
obtained by expanding in the number of loops. Each extra
order brings extra smallness in 1 /N. Explicit calculations
show that the parameter for the loop expansion is actually
ln2 N /N2, which is even smaller than 1 /N.

The one-loop self-energy diagram is shown in Fig. 1. The
k dependence of the one-loop self-energy is regular, with a
prefactor O�
��1, and we neglect it. The frequency depen-
dence of �1�k ,�m� is �m

2/3,

�1�k,�m� = i�m
2/3�0

1/3, �0 =
ḡ2

�2�3�3�2NmvF
2

. �3.1�

The prefactor �0 formally contains 1 /N, but it can be ab-
sorbed into the renormalization of the Fermi velocity. All

1ω

−ω 1ω
FIG. 1. The one-loop self-energy diagram.
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higher-order diagrams contain the same combination
�m

2/3�0
1/3 and we will just consider �0 as a normalization

factor for frequency.
The �2/3 dependence of � implies that quasiparticles are

not sharply defined �along real frequency axis, Re � and
Im � are of the same order �2/3�, i.e., the system behavior is
not a Fermi liquid. At the same time, ��k ,�m� still vanishes
at zero frequency, i.e., the Fermi surface remains well de-
fined. Substituting the one-loop self-energy into G�k ,�m�
and neglecting �m in comparison to �1 we reproduce Eq.
�1.1�.

The relevant two-loop self-energy diagram is shown in
Fig. 2�a�. Earlier estimates show that when �k=0,
�2�kF ,�m�� i�m

2/3�0
1/3�ln N /N�2 �Refs. 2 and 4�. We found

that �2�k ,�m� is also a nontrivial function of �m
2/3�0

1/3 /�k. For
our purposes, we need the expression for �2��m ,k� near the
mass shell �i.e., near �=0�. We found �see Appendix B� that,
to order �2, this expansion is regular and

�2�k,�m� = i�m
2/3�0

1/3� ln N

4�N
�2

� �0.52 +
�2

6
� + O��2�
 .

�3.2�

Adding �2 to �1, substituting into the Green’s function,
and casting G into the form of Eq. �1.1�, we find

FN�x� =
ZN

DN + ix
+ Finc�x� , �3.3�

where Finc is a regular function near the mass shell x
=−iDN and

ZN = 1 − 2.16� ln N

4�N
�2

, DN = 1 − 0.52� ln N

4�N
�2

.

�3.4�

We see that, at this level of consideration, 1 /N corrections
lead to three effects: the pole in G��k ,x� acquires the residue
ZN	1, the location of the pole along the imaginary x axis
shifts to a somewhat different x= iDN, and the Green’s func-
tion acquires an incoherent part which is regular near the
pole. Perturbation theory in 1 /N is perfectly well defined and
the pole in FN�x� is surely present at large N.

B. Fermionic propagator at N=0

In the limit N=0, the curvature of the Fermi surface scales
out and the original 2D problem maps onto an effective one-
dimensional �1D� theory of electrons with retarded interac-
tion �Refs. 2 and 13�. This allows one to compute fermion
propagator by using 1D bosonization technique. The result
for G�k ,�m� can again be cast into the form of Eq. �1.1�, but
now2,13

FN=0�x� =
3

2
exp��− 1�5/4
3/2�5/3�x3/2�

−
3�3i

4�
�

0

�

dy
exp�i�
�5/3�xy�3/2�

y2 + iy − 1
. �3.5�

The analysis of FN=0�x� is presented in Appendix A. The key
point is that FN=0�x� is a regular function in any finite region
in the upper half plane and, in particular, along imaginary
x= iy, y�0, where there was a pole at large N. At small x,
FN=0�x� expands in regular powers of x,

FN=0�x = iy� = 1 + y +
27�3

16�

3�5/3�y2 + O�y3� . �3.6�

At large x, FN=0�x= iy� grows exponentially with y, but still
remains finite for all finite y. We plot FN=0�iy� in Fig. 3.

(c)

+ ...+=

Σuniv = 2 x ,

(a)

1ω

−ω 1ω −ω ω2−ω 1ω − ω2

ω2

(b)
<< ωω3

+

ω1 << ω ω2 ω∼∼

−ω ω3

−ω ω2−ω 1ω << ωω3

ω1 << ω ω2 ω∼∼

FIG. 2. �a� The relevant two-loop self-energy diagrams. The
universal contributions come from �1 ,�−�2
��3/2�� and
�2 ,�−�1
�3/2���. �b� Relevant vertex corrections to the two-
loop diagram whose universal contribution comes from �1 ,�−�2


��3/2. For the second universal contribution, from �2 ,�−�1


�3/2, the corrections to the other two vertices are relevant. �c� The
full universal self-energy with fully renormalized vertices.

FIG. 3. �Color online� The function FN=0�iy�. Dashed line rep-
resents small y asymptotics �see text�.
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C. Nonanalytic terms in the self-energy

Our key interest is how the pole disappears between N
=0 and N�1. One possibility might have been that the pole
drifts to higher x with decreasing N and disappears at x= i�
at N=0. That would be consistent with the divergence of
FN=0�iy� at y=�. However, the expansion in 1 /N at large N
shows that the pole actually drifts to smaller x= iy with de-
creasing N. Another possibility would be a behavior in which
the residue ZN of the pole gradually disappears at N→0, i.e.,
regular corrections to ZN �the ones which are of order
ln2 N /N2 at large N� make Z0=0. We, however, did not find
a self-consistent solution for ZN and DN at small N �this
search required some computational efforts�.

Below we assume that regular corrections to fermionic
propagator leave ZN and DN finite at N→0 and the pole is
destroyed by “universal” nonperturbative terms in the loop
expansion of the self-energy near the mass shell. These terms
appear at every order in the loop expansion, are nonanalytic,
and come from fermions with the lowest energies. We first
identify these terms at N=0 and then show how they get
modified at finite N.

1. N=0

The two-loop diagram presented in Fig. 2 contains mo-
mentum and frequency integrals. At N=0, the curvature term
that couples the two disappears �see Eq. �B2��. The momen-
tum and frequency integration in the self-energy then factor-
ize and the momentum integrals are straightforwardly evalu-
ated leaving only nontrivial frequency integrals. The two-
loop self-energy becomes

�2�k,�m� = i�m
2/3�0

1/3� �3

2�
�2� 4�

3�3
�2�

0

1 d�1

�1
1/3�

1−�1

1 d�2

�2
1/3

�
1

� + ��1 − �1�2/3 + �1 − �2�2/3 + ��1 + �2 − 1�2/3 − 1	
,

�3.7�

where �1 and �2 are two internal frequencies normalized by
�m and, we remind, �=1+ i�k / ��m

2/3�0
1/3�. Note that the cou-

pling ḡ is fully absorbed into �0, i.e., for a generic �
=O�1�, �2�k ,�m� �as well as self-energies of higher-loop or-
der� is of order �2/3�0

1/3, with a prefactor of order 1.
Expanding Eq. �3.7� to first order in �, we only obtain

regular contributions to Z0 and to D0. These contributions are
perturbative in the sense that typical internal �1,2 are of or-
der 1, much larger than ��1 over which one expands. How-
ever, this does not go beyond first order—a formal expansion
to order �2 yields a divergent prefactor. On more careful
look, we found that the next term beyond � is actually �3/2.
This term comes from the regions �1�1, 1−�2=�2��1
and �2�1, 1−�1=�1��1. The contributions from both re-
gions are equal and we only focus on the first one, for which
the denominator in Eq. �3.7� becomes �+ ��2��

2/3+ ��1
−�2��

2/3. Rescaling �1=�3/2x, �2�=�3/2y, and multiplying
the self-energy by a factor of 2 to account for the two re-
gions, we rewrite Eq. �3.7� as

�2�k,�m� = 8i�m
2/3�0

1/3�3/2

9

� �
0

1/�3/2 dx

x1/3�
0

x dy

1 + y2/3 + �x − y�2/3 .

�3.8�

The largest contribution to this integral is confined to the
upper limit of the integration over x. This is a regular pertur-
bative term �internal frequency ��1�2/3=�x2/3��	. How-
ever, we also found a contribution which is confined to x
=O�1�, i.e., to internal energies of order �3/2. For the integral
in Eq. �3.8� this contribution can be easily singled out—it is
given by

�2�k,�m� = �2,reg�k,�m� + 8i�m
2/3�0

1/3�3/2

9
�

0

� dx

x1/3�
0

x

dy

�
1

�1 + y2/3 + �x − y�2/3	�y2/3 + �x − y�2/3	2 .

�3.9�

Evaluating the integral numerically, we obtain

�2�k,�m� = 2.69i�m
2/3�0

1/3�3/2. �3.10�

At the first glance, this term is smaller than O��� and is
irrelevant to the issue of pole disappearance. Let us, how-
ever, continue our analysis and verify whether there are sin-
gular renormalizations of �2�k ,�m� from three-loop and
higher-order diagrams. We found that such renormalizations
do exist and come from vertex corrections. In particular, for
the universal contribution to �2 from �1�1, 1−�2=�2�
�1, singular renormalization comes from corrections to the
two spin-boson vertices which involve bosonic propagator
with the frequency �2. Each vertex correction contains a
block made out of two extra Green’s functions and one in-
teraction line. We verified that the corrections to the two
vertices involving the propagator with �2 are the same and
each yields, after integrating over internal �k,

ḡ

�2��2vF
�

��1

� d�

�1���� dqq

q3 + ��
=

2

3
�

�1

1 dz

z
=

2

3
ln

1

�1
.

�3.11�

This form of the vertex correction has been originally ob-
tained in Ref. 2. We see that vertex correction is logarithmic
and large if �1�1. Typical �1 for the universal term in �2
are of order �3/2, hence the leading vertex correction is
ln�1 /��. Observe that the prefactor is just a number—the
coupling ḡ is canceled out by ���0�1/3� ḡ. Evaluating higher-
order corrections in the leading logarithmical approximation
�in which we keep only the highest power of the logarithm at
any order�, we find that the full vertex 
 becomes �see Fig.
2�c��
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 = 1 + ln
1

�
+

1

2
�ln

1

�
�2

+
1

6
�ln

1

�
�3

+ . . . = eln 1/� =
1

�
.

�3.12�

This 
 is the solution of the differential renormalization
group �RG� equation

d


dL
= 
, L = ln

1

�
. �3.13�

The implication is that the vertex correction can be treated
within RG technique, i.e., that the system is renormalizable.

Equation �3.12� is not exact, however, as there exist extra
terms of order ln�1 /�� from second-order and higher-order
vertex corrections. Such terms come with prefactors O�1�
and modify the exponent in Eq. �3.12� to


 �
1

�a , �3.14�

where a=O�1�. Because the exponent a has contributions
from all orders, we cannot compute it explicitly within the
loop expansion or verify explicitly that logarithmic series
still exponentiate beyond the leading logarithmic approxima-
tion �i.e., that RG procedure leading to Eq. �3.14� is still
valid	. At the same time, the situation here is not different
from a variety of other problems where RG treatment has
been adopted based on the leading logarithmic series,2,16,17

and we assume that Eq. �3.14� is valid without further rea-
soning.

Combining Eq. �3.14� with Eq. �3.10�, we find that the
universal part of the self-energy, dressed by logarithmic ver-
tex renormalizations, behaves near the mass shell as

�univ 
 i�m
2/3�0

1/3�3/2−2a. �3.15�

To agree with the bosonization formula, we have to set a
=3 /4, then �univ becomes � independent, and the full
Green’s function behaves near the former mass shell as
G−1�k ,�m�= i�m

2/3�0
1/3�A+B�+. . .�, where A and B are con-

stants. We now reevaluate universal terms at N�0 and see
how the universal self-energy gets modified at a finite N.

2. Finite N

At a finite N, momentum and frequency integrals do not
decouple and the computations become more involved. Still,
the two momentum integrals can be evaluated exactly, at any
N, so the remaining task is to properly estimate the frequency
integrals. As at N=0, we expand in � and verify whether or
not this expansion contains the nonperturbative universal
term. We find that such term is again present, but at a finite N
and �	N2, scales as �5/2 rather than �3/2. This term comes
from the same range of internal frequencies as at N=0—one
of the internal frequencies is small and another is close to
external �. Using the same notations as at N=0, we obtain
for the contribution from such region, with logarithmic ac-
curacy,

�2�k,�m� = i�m
2/3�0

1/3 �5/2

4�2N2�
0

1/�3/2 dx

x

��
0

x

dy�1 + y2/3 + �x − y�2/3�

� �ln� N
��

� + ln� x1/3

1 + y2/3 + �x − y�2/3�
2

.

�3.16�

The universal term �the one which does not depend on the
upper limit of integration� comes from the cross product of
the two logarithms, and the universal part of the two-loop
self-energy is

�2�k,�m� = i�m
2/3�0

1/3�5/2 J

8�2N2 ln
N2

�
. �3.17�

The prefactor J is given by

J = − �
0

�

dx�
0

1

dz��x,z� , �3.18�

where

��x,z� = ln�1 +
1

x2/3fz
� −

1

x2/3fz
+ x2/3fz�ln�1 +

1

x2/3fz
�

−
1

x2/3fz
+

1

2
� 1

x2/3fz
�2
 �3.19�

and fz=z1/3+ �1−z�1/3. Evaluating the integral, we obtain J
�0.96.

The next step is to include vertex renormalizations from
higher-order diagrams, i.e., renormalize the universal part of
�2 in Eq. �3.17� into �2,univ=�2�
2. We found that multi-
loop contributions to 
 are again logarithmic, but now the
lower limit of the logarithm is set by the largest of � and N2.
The full result is then 
�1 /�3/4 for ��N2 and 
�1 /N3/2

for ��N2. Combining this with Eq. �3.17�, we obtain

�univ 
 i�m
2/3�0

1/3g� �

N2� , �3.20�

where g�y�1��y5/2 and g�y�1�=const. We neglected
ln � /N2 term because 
 is only known to the accuracy that
neglects possible additional logarithmical factors.

Substituting the full �univ into the Green’s function, we
reproduce Eq. �1.3�

G�k,�m� = −
1

�k
FN→0��� ,

FN→0��� =
1

− � + g��/N2�
. �3.21�

We see that the pole survives, at the smallest � for any
nonzero N, and, moreover, its residue remains ZN=O�1�.
However, at distances from the pole larger than N2, the sys-
tem evolves and its behavior becomes essentially the same as
at N=0.
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IV. HALF-FILLED LANDAU LEVEL

In this section we study a different example of a non-
Fermi-liquid behavior—2D fermions at half-filled Landau
level with unscreened Coulomb interaction.2,14,15 The effec-
tive low-energy theory is described by Eq. �2.1� with mass-
less bosonic propagator

��q,�� =
�0

muq + ���/q�
. �4.1�

Here u is the effective velocity �u=e2 / �8��̂�, with �̂ the di-
electric constant of a host semiconductor	 and �
= ḡkF / ��vF

2� is the same as in the �2/3 problem.
We start by presenting the results for the limiting cases

N→� and N=0. Large N limit is studied in 1 /N expansion
while N=0 is obtained via 1D bosonization. We then discuss
our results for the universal terms in the loop expansion near
the mass shell.

A. Fermionic propagator at Nš1

The one-loop self-energy has been calculated in Ref. 2. It
has the form

�1��m� = i
�m ln� �0

��m�� , �4.2�

where 
= ḡ / �4�2ukF� is a dimensionless coupling and �0 is
an energy scale defined by �0= �2� /N��EF / ḡ�ukF. The mo-
mentum dependent part of � is regular and we neglect it. The
� log � form of the self-energy Eq. �4.2� implies that the
system exhibits a marginal non-Fermi-liquid behavior, how-
ever the Fermi surface remains well defined.

As in the previous case, higher-order self-energy diagrams
are parametrically small in �ln N /N�2. Near the mass shell

�̃=0, where

�̃ = 1 +
i�k


�m ln��0/�m�
, �4.3�

we found at two-loop order �see Appendix C� that �2�k ,�m�
is linear in �̃,

�2�k,�m� = i
�m ln��0/�m�
�̃

24
� ln N

N
�2

. �4.4�

We see that, as for the �2/3 problem, multiloop self-energy
terms acquire extra powers of �ln N /N�2. Substituting one-
and two-loop self-energies into the Green’s function and re-
writing it as in Eqs. �1.1� and �3.3�, we obtain G�k ,�m�
=−�1 /�k�F̃N�−y�, where y= ��1 / i�k�, and F̃N→��y� is again
given by Eq. �3.3�, but now

ZN = 1 −
1

24
� ln N

N
�2

, DN = 1. �4.5�

We see that 1 /N corrections for the Landau-level case are
qualitatively similar to the case of a nematic QCP—in both
cases, the pole in G�k ,�m� viewed as a function of �k sur-
vives but acquires a residue ZN	1.

In real space, we have �see Appendix C 1�

G�r� = G0�r�� 1

ln�r/r0�
, vFt 	 r ln r/r0,

G�r,t� � G0�r,t�, vFt � r ln�r/r0� , �4.6�

where G0�r , t�� �r+vFt�−1�kF /r is a propagator of a free fer-
mion and r0=vF /�0.

B. Low-energy effective theory for N=0: Fermionic
propagator

As in the previous case, at N=0 the curvature of the
Fermi surface becomes unimportant, the motion of fermions
becomes essentially one dimensional, and the fermionic
propagator can be obtained by mapping the original 2D prob-
lem to an effective 1D theory.2,13 For a half-filled Landau
level the effective action has the form

S =� d�dk��̄−�,−k
R,a �i� − vFk���,k

R,a + �̄−�,−k
L,a �i� + vFk���,k

L,a

+ �4�2
vF�ln ����,k
R − ��,k

L �2	 , �4.7�

where ��,k= �̄�,k
a ��,k

a is the density operator and the replica
index a has s values. As usual, we take the limit s→0 in
order to avoid generating fermionic loops in perturbation
theory.

We solve the model Eq. �4.7� by 1D bosonization. Fol-
lowing the standard steps we find that

G1D�r,�� =
i

2��r − ivF��

�exp�− 

r ln�r − ivF��

�r − ivF�� 
 , �4.8�

where � is Matsubara time. A Fourier transform of Eq. �4.8�
yields a simple scaling form for G�k ,�m�,

G�k,�m� = −
1

�k
F̃N=0�− 
�m ln��0/��m��

�k

 ,

F̃N=0�x� = e−ix. �4.9�

We verified that the loop expansion reproduces the small x

expansion of F̃N=0�x�. Obviously, F̃N=0�x� has no poles along

x= iy where F̃N=0�iy�=ey. We verified that the singularity at
y→� is responsible for the exponential behavior of G�r , t�
in Eq. �4.8�.

C. Nonanalytic terms in the self-energy

1. N=0

The relevant two-loop self-energy is again given by the
diagram in Fig. 2�a�. We compute it in Appendix C for arbi-
trary N. As in the previous case, consider first N=0. We have
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�2�k,�m�

= i
�m�
0

1

d�1�
1−�1

1

d�2
ln��0/��m�1�	ln��0/��m�2�	

�̃ ln��0/�m� + ��1 − �1�ln� 1

1 − �1

 + �1 − �2�ln� 1

1 − �2

 + ��1 + �2 − 1�ln� 1

�1 + �2 − 1

� ,

�4.10�

where �1 and �2 are the two internal energies normalized by
�m. In the previous case, �2 was regular to first order in �.

This time, expanding Eq. �4.10� to first order in �̃ we found
that the prefactor diverges logarithmically. This suggests that
the term next to the constant is already nonanalytic. We ex-
plicitly verified that the nonanalyticity emerges in Eq. �4.10�
from the regions �1�1, �2
1 and �2�1, �1
1. Within
the logarithmic accuracy, the nonanalytic contribution to �2
can then be cast into the form

�2�k,�m�

= − 2i
�m�̃ ln2��0/�m�

� �
�̃ ln��0/�m�/�ln �̃�

1 d�1

�1 ln 1/�1
=

− 2i
�m�̃ ln2��0/�m�ln ln� 1

�̃
� . �4.11�

As before, higher-order diagrams modify Eq. �4.11� by
adding vertex corrections. A building block for a vertex cor-
rection is again the product of two fermionic Green’s func-
tions and one interaction line. Evaluating this block we find
that vertex corrections are again logarithmical. Using further
the fact that typical dimensionless external energy for the
correction to the vertex involving a boson with �2 is of order

�1, we obtain the renormalized vertex 
̃ in the form


̃ = 1 + ln�1/�1� . �4.12�

Evaluating further higher-order vertex corrections, we obtain
in the leading logarithmical approximation


̃ = 1 + ln
1

�1
+

1

2
�ln

1

�1
�2

+ . . . = eln 1/�1 =
1

�1
.

�4.13�

As in the previous case, the exponent is modified by higher-
order corrections to


̃ 
 � 1

�1
�b

. �4.14�

A simple experimentation shows that the full universal self-

energy �univ=�2
̃2 agrees with bosonization if we set b
=1 /2. Indeed, in this case we have, combining Eqs. �4.14�
and �4.11�,

�univ = − ic
�m�̃ ln2��0/�m�

� �
�̃ ln��0/�m�/�ln �̃�

1 d�1

�1
1+2b�ln 1/�1	

= − ic
�m ln��0/�m� , �4.15�

where c=O�1�. We see that the fully renormalized �univ
tends to a finite value on the mass shell, i.e.,

G−1��̃� = i
�m ln��0/�m���̃ + c	 . �4.16�

This behavior is consistent with the bosonization formula,

Eq. �4.9�, which yields G−1� �1+ �̃� near the mass shell. The
computation of the constant c is beyond the scope of our
analysis.

2. Finite N

We now check how the expression for the self-energy is
modified at finite N. Just like at N=0, we expand the two-

loop self-energy in powers of �̃ and extract the universal
term in the prefactor. We find that, to logarithmical accuracy,

the linear in �̃ term is already universal, like at N=0, and the
only difference between N=0 and N�0 cases is in lower
limit of the frequency integration over �1: at a finite N,

instead of �̃, as in Eq. �4.11�, we now have N2. Accordingly,
instead of Eq. �4.11�, we now have

�2�k,�m� = − i
�m ln2��0/�m��̃ ln ln�1/N� . �4.17�

As the next step, we include vertex corrections. They are
still logarithmical and exponentiate as in Eq. �4.14�, but now
typical �1 are of order N2, hence

�univ � − i
�m ln2��0/�m�
�̃

N2 . �4.18�

We neglected ln�ln N� factor as the renormalized vertex is
only known to this accuracy. We see that �univ is still linear
in �, i.e., the pole in the Green’s function survives in the
range of order N2. This is similar to �2/3 case. Unlike that
case, however, the residue of the pole scales as N2 and van-
ishes when N=0. Substituting �univ into the Green’s function

and rewriting the result in terms of F̃N, as in Eq. �4.9�, we
obtain near the mass shell

G�k,�m� = −
1

�k
F̃N→0��̃� ,
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F̃N→0��̃� = F̃� �̃

N2� , �4.19�

where F̃�y�1��y and F̃�y�1�=const.
The difference in ZN between the QCP and the Landau-

level cases is due to the fact that in the case of a Landau level
the universal self-energy already emerges in the loop expan-

sion already at order �̃ while at a nematic QCP it appears at
order �3/2. There may also be additional differences between

the scaling functions FN→0 and F̃N→0 due to extra logarith-
mic or doubly logarithmic factors, but, as we said, these
factors are beyond the scope of our paper.

V. CONCLUSIONS

In this paper we considered two examples of 2D fermions
coupled to critical overdamped bosonic fields. One describes
a nematic and an Ising ferromagnetic quantum critical point
and the other describes a half-filled Landau level. For both
cases, the low-energy physics is governed by the interaction
between fermions and collective neutral excitations with the
static propagator ��q�=�0 /q1+x. For a nematic and ferromag-
netic QCP, x=1, and for a half-filled Landau level with un-
screened Coulomb interaction, x=0. In both cases, quantum
fluctuations destroy a coherent Fermi-liquid behavior down
to the lowest energies, but leave the Fermi surface intact. The
issue we addressed is what is the form of the fermionic
propagator and whether it has a pole as a function of the
dispersion �k.

The low energy properties of these systems can be studied
in a controllable way by extending the theory to N�1 fer-
mionic flavors and assuming that the interaction with neutral
excitations conserves the flavor. At large N, self-energy is
perturbative in 1 /N and the pole in the Green’s function
survives despite that ��kF ,����2/3 for x=1 and ��kF ,��
�� log � for x=0. 1 /N corrections only affect the residue of
the pole ZN and make ZN	1. Existence of the pole implies
that the propagator in real space/time is long ranged and
decays by a power law, e.g., as G�r�vFt��1 /r2 and G�r
�vFt��1 / t�r for x=1. The other limit, N=0, has been
solved using 1D bosonization and the result is that for both
x=1 and x=0, fermionic propagator does not have a pole and
the propagator G�r , t� is short ranged.

The issue we addressed is at what N the pole disappears.
This is essential as the physical case N=1 is “in between” the
two limits. We performed the loop expansion for the self-
energy both at N=0 and at a finite but small N. At N=0, we
identified universal nonanalytic contributions to � which de-
stroy the pole and make fermionic propagator regular near
the former mass shell. At small but nonzero N, we found that
singular universal terms in the self-energy still exist, but they
do not destroy the pole in the range of order N2 around the
mass shell. At larger deviations from the mass shell, fermi-
onic propagator recovers the same regular form as at N=0.
For a nematic QCP, the residue of the pole ZN remains O�1�
in this range, while for the case of a half-filled Landau level,
the residue of the pole scales as ZN�N2.

The result that the pole in G�k ,�m� exists for any N�0
and only vanishes at N=0 agrees with the conclusion by

Altshuler et al.2 The key result of our work is the identifica-
tion of peculiar universal terms in the loop expansion of the
self-energy, which are responsible for the destruction of the
pole at N=0. At N�0, these terms get modified—they do
not destroy the pole but reduce the width where the pole
exists.
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APPENDIX A: ANALYSIS OF THE FERMION
PROPAGATOR AT A QCP AT N\� AND N=0

In this appendix we analyze the behavior of the fermion
propagator

G�r,�� = �
−�

� d�m

2�
� dk

�2��2eikr−i�m�G�k,�m� �A1�

at a nematic QCP at N�1 and N=0. The goal of this analy-
sis is to demonstrate that the form of long-distance behavior
of G�r ,��, where � is the Matsubara time, is qualitatively
different depending on whether or not G�k ,�m� has a pole as
a function of �k.

We use the Matsubara frequency form of G��k ,�m�
=−�1 /�k�FN�−�m

2/3�0
1/3 /�k�. Introducing new variables x

=−��m
2/3�0

1/3� /�k, y= ��kr /vF�, and �= �vF
3/2� /�0

1/2r3/2� we re-
write Eq. �A1� as

G�r,�� =
3

2r2� 1

�3/2��EF

�0
�

−�

�

dx�x�1/2�
−�

�

dy�y�1/2

� cos�kFr + y −
�

4
�FN�x�e−i�− 1�3/2x3/2y3/2�. �A2�

1. Limit N\�

In this limit FN=��x�=1 / �1+ ix�. Substituting this into Eq.
�A2�, we obtain

G�r,�� =
1

r2� 3

2�3/2��EF

�0
�

−�

�

dx�
−�

�

dy�xy�1/2

�
e−i�− 1�3/2x3/2y3/2�

1 + ix
cos�kFr + y −

�

4
� . �A3�

We now show that the pole at x=−i determines long-distance
behavior of G�r , t�. For definiteness, we focus on the case
��1, i.e., vF

3/2���0
1/2r3/2. In this limit, the exponential fac-

tor in Eq. �A3� can be set to unity and the integrals decouple.
Integration over y is straightforward and yields
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lim

→0+

�
−�

�

dy�y�1/2cos�kFr + y −
�

4
�e−
�y�

= −��

2
cos�kFr −

�

4
� . �A4�

We added the factor e−
�y� for regularization. The subsequent
integration over x is also straightforward

�
−�

�

dx
�x�1/2

1 + ix
= 2�

0

�

dx
x1/2

1 + x2 = �2� . �A5�

We also evaluated the integral in Eq. �A5� by extending the
integration into the complex plane of x and found that the
result comes from the pole at x= i; the branch cut contribu-
tion in Eq. �A5� is cancelled out. Substituting Eqs. �A4� and
�A5� into Eq. �A3� we find that the fermion propagator
G�r ,���1 /r2 at vF��r3/2 /r0

1/2, where r0=vF /�0. We empha-
size again that the power-law decay is the consequence of the
pole in G�k ,�m�.

For completeness, we also present the result for G�r ,��
for ��1. In this case we obtained

G�r,�� =
1

r2� 3
�2�

��EF

�0
K��� , �A6�

where

K�����→� =
2�2

3�
cos�kFr −

�

4
� . �A7�

Using ��� /r3/2 we find that in this limit the real space/time
Green’s function behaves as G�r ,���1 / ��rvF��. Combining
the two results, we have

G�r,���N→� � �
1

r2 , vF� � r3/2/r0
1/2

kF

vF�
�r0

r
, vF� � r3/2/r0

1/2� �A8�

or, in terms of the free-fermion propagator G0�r ,��,

G�r,���N→� = �G0�r,���r0/r , vF� � r3/2/r0
1/2

G0�r,���kFr0, vF� � r3/2/r0
1/2.
� �A9�

2. Limit N=0

The expression for G�k ,�m� in this case is given in Ref. 2
�see Eq. �3.5�	. The function FN=0�x� in Eq. �3.5� can be
represented as

FN=0�x� = cosh�ei�/4
3/2�5/3�x3/2	 − ixF1�x�

− x227�3

16�

3�5/3�F2�x� , �A10�

where F1 and F2 are expressed in terms of hypergeometric
functions

F1�x� = 1F2�1;5/6,4/3;�1/4�i
3�5/3�x3	 ,

F2�x� = 1F2�1;7/6,5/3;�1/4�i
3�5/3�x3	 . �A11�

At small arguments, F1�x� and F2�x� are expandable in x3

F1�x� = 1 +
9

40
i�
�5/3�x	3 −

81

6160
�
�5/3�x	6 + O�ix9	 ,

F2�x� = 1 +
9

70
i�
�5/3�x	3 −

81

14 560
�
�5/3�x	6 + O�ix9	 .

�A12�

By contrast, at large �x��1, FN=0�x� diverges as

FN=0�x� =
3

2
exp�− ei�/4
3/2�5/3�x3/2	

+ �−
3i�3

4�x
−

2

9
3�5/3�x2 − O�1/x4	
 . �A13�

Still, along x= iy FN=0�iy� as a regular function of y for all
finite y, i.e., there is no pole. The plot of FN=0�iy� vs y is
presented in Fig. 3.

Below we show that the absence of the pole eliminates a
power-law decay of G�r ,��, while the divergence of FN=0�x�
at infinity gives rise to the exponential decay of the fermi-
onic propagator.

The easiest way to evaluate the integral over x in Eq. �A2�
with FN=0�x� given by Eq. �A10� is to deform the integration
contour into the complex plane. As for large N, the contribu-
tion from the branch cut is canceled out and in the absence of
the pole G�r ,�� only comes from the integral over a semi-
circle with infinite radius. Using parametrization

x3/2 = R3/2 exp�i��, � 	 � 	 2� , �A14�

with R→� substituting into Eq. �A2� the large-x asymptote
of FN=0,

FN=0�x� =
3

2
exp�− ei�/4+i�
3/2�5/3�R3/2	 , �A15�

and introducing y1=�2/3y, we obtain

G�r,�� = −
1

�r2� 3

2�3/2��EF

�0
�

−�

�

dy1�y1�1/2

� cos�kFr + �y1/�2/3	 −
�

4
��

�

2�

d�iR3/2ei�

�
3

2
exp�R3/2ei��− iy1

3/2 − ei�/4
3/2�5/3�	� . �A16�

Integrating over the angular variable � we obtain

R3/2�
�

2�

d�ei��exp�R3/2ei��− iy1
3/2 − ei�/4
3/2�5/3�	�

= 2���iy1
3/2 + ei�/4
3/2�5/3�	 , �A17�

where ��. . .� is the � function. The integration over y1 is then
straightforward and yields
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G�r,�� = −
1

�r2� 3

�1/2��EF

�0
�

−�

�

dy1�y1�1/2

� cos�kFr + �y1/�2/3	 −
�

4
���iy1

3/2 + ei�/4
3/2�5/3�	

�
1

��r
exp�−


�5/3�
�i�2/3�2/3� . �A18�

Re-expressing � in terms of r and t, we finally obtain

G�r,�� �
kF

vF�
�r0

r
exp�−


�5/3�r
r0

1/3�ivF�	2/3� . �A19�

We see that G�r ,�� is now exponential. The full bosonization

result contains �ivF�−r� instead of ivF� in denominator of
Eq. �A19� �see Ref. 13�. To reproduce it, we would need
more complex form of G�k ,�m� than the one we borrowed
from Ref. 2.

APPENDIX B: TWO-LOOP CONTRIBUTION TO THE
SELF-ENERGY AT A QCP

In this appendix, we show the details of the calculations
of the two-loop and three-loop self-energy diagrams.

1. Two-loop diagram

The diagram is presented in Fig. 2. In analytic form

�2�k,�m� = − g4� d�1dq1

�2��3 � d�2dq2

�2��3 ��q1,�1���q2,�2�G�k + q1,�m − �1�G�k + q2,�m − �2�G�k + q1 + q2,�m − �1 − �2�

=
ḡ2

�2��6� d�1dq1� d�2dq2
�q1�

���1� + �q1�3
�q2�

���2� + �q2�3� 1

���m − �1� − vF�kx + q1x� − N�ky + q1y�2/2m



�� 1

���m − �2� − vF�kx + q2x� − N�ky + q2y�2/2m

� 1

���m − �1 − �2� − vF�kx + q1x + q2x� − N�ky + q1y + q2y�2/2m

 .

�B1�
Integrating over q1x and q2x and rescaling frequencies �1 and �2 by �m and momenta q1y ,q2y by ���1,2�1/3, we obtain

�2�k,�m� = − � �3

2�
�2

�m
2/3�0

1/3�
−�

� dq̄1dq̄2�q̄1q̄2�
�1 + �q̄1�3��1 + �q̄2�3�

�
0

1 d�1

�1
1/3�

1−�1

1 d�2

�2
1/3

�
1

2�3Nq̄1q̄2��1�2�1/3 + �i −
�k

�m
2/3�0

1/3� + i��1 − �1�2/3 + �1 − �2�2/3 + ��1 + �2 − 1�2/3 − 1	
, �B2�

where �1,2=
�1,2

�m
and q̄1,2=

q�1,2�y

���1,2�1/3 .

a. Large N expansion

The two-loop self-energy to leading order in 1 /N is ob-
tained by expanding the denominator in Eq. �B2� to order
1 /N2. The two momentum integrals are logarithmical with
the lower limit set by 1 /N. We have

�2�k,�m� = − � ln2 N

16�2N2��m
2/3�0

1/3�
0

1 d�1

�1
�

1−�1

1 d�2

�2

� � �k

�0
1/3�m

2/3 − i��1 − �1�2/3 + �1 − �2�2/3

+ ��1 + �2 − 1�2/3	� . �B3�

Integrating over �1 and �2 in Eq. �A3� we obtain Eq. �3.2�
of the main text.

b. Expansion near the mass shell

Equation �B3� is valid when ln N is large and the result,
Eq. �3.2�, contains only the term linear in �. For small N, the

momentum integration has to be done more accurately. Be-
low we expand �2 near the mass shell and show that this
expansion contains a nonanalytic �5/2 term. This nonanalytic
term comes from low-energy fermions and is enhanced by
vertex corrections.

We assume and then verify that the nonanalytic term
comes from the regions �1�1, 1−�2�1, and �1�1, 1
−�2�1. The contributions from these two regions are equal
and we only focus on the contribution from �1�1, 1−�2
�1. We introduce �2�=1−�2 and make use of the identity

�
−�

� dq1�q1�
1 + �q1�3�−�

� dq2�q2�
1 + �q2�3

1

A + iBq1q2

=
A

54�A6 + B6�
��2�32A4 − 32A2B2 + 17B4�

+ 108B ln�B/A���A3 + B3 ln�B/A��	 , �B4�

where in our case

B = 2�3N��1�1/3, A = � + ��2��
2/3 + ��1 − �2��

2/3. �B5�

The source for nonanalyticity is the term with ln2�B /A�, and
keeping only this term we obtain
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�2�k,�m� = 2i�m
2/3�0

1/3� �3

2�
�2�

0

1 d�1

�1
1/3�

0

�1

d�2�

�
2�� + ��2��

2/3 + ��1 − �2��
2/3	�2�3N�1

1/3�4

�� + ��2��
2/3 + ��1 − �2��

2/3	6 + �2�3N�1
1/3�6

� ln2� N�1
1/3

� + ��2��
2/3 + ��1 − �2��

2/3
 . �B6�

Introducing new integration variables x=�1 /�3/2 and y
=�2� /�3/2, we rewrite Eq. �3.16� as

�2�k,�m� = i�m
2/3�0

1/3 �5/2

4�2N2�
0

1/�3/2 dx

x
�

0

x

dy�1 + y2/3

+ �x − y�2/3	�ln� N
��

�
+ ln� x1/3

1 + y2/3 + �x − y�2/3�
2

. �B7�

This expression contains contributions confined to the upper
limit of the integration over x, but also contains universal
contributions which come from x ,y=O�1� and is indepen-
dent on the upper limit of integration. One can easily verify
that the largest contribution of this kind comes from the cross
product of the two logarithmic factors in the last bracket.
Evaluating the integrals explicitly we obtain Eq. �3.16� of the
main text.

2. Three-loop diagram

We verified that the most singular contributions to fermi-
onic self-energy at the three-loop level come from the two
diagrams presented in Fig. 2�b�. Compared to the two-loop
diagram, these two diagrams describe corrections to the two
spin-boson vertices which involve a boson with a frequency
�2��. Both diagrams give equal contributions, and we con-
sider only the one from Fig. 2�b�. The analytical expression
for this diagram is

�3�k,�m� = g6� d�1dq1

�2��3 � d�2dq2

�2��3 � d�3dq3

�2��3 ��q1,�1���q2,�2���q3,�3�G�k + q1,�m − �1�

�G�k + q1 + q2,�m − �1 − �2�G�k + q2,�m − �2�G�k + q2 + q3,�m − �2 − �3�G�k + q3,�m − �3�

=
ḡ3

�2��6� d�1dq1� d�2dq2� d�3dq3
�q1�

���1� + �q1�3
�q2�

���2� + �q2�3
�q3�

���3� + �q3�3

� � 1

���m − �1� − vF�kx + q1x� − N�ky + q1y�2/2m

� 1

���m − �2� − vF�kx + q2x� − N�ky + q2y�2/2m



� � 1

���m − �3� − vF�kx + q3x� − N�ky + q3y�2/2m



� � 1

���m − �1 − �2� − vF�kx + q1x + q2x� − N�ky + q1y + q2y�2/2m



� � 1

���m − �2 − �3� − vF�kx + q2x + q3x� − N�ky + q2y + q3y�2/2m

 . �B8�

Performing the integration over variables q1x, q2x, and q3x we obtain

�3�k,�m� = − � �3

2�
�3

�m
2/3�0

1/3�
−�

� dq̄1dq̄2dq̄3�q̄1q̄2q̄3�
�1 + �q̄1�3��1 + �q̄2�3��1 + �q̄3�3�

�
0

1 d�2

�2
1/3�

1−�2

1 d�1

�1
1/3�

1−�2

1 d�3

�3
1/3

�
1

2�3Nq̄1q̄2��1�2�1/3 + i� + i��1 − �1�2/3 + �1 − �2�2/3 + ��1 + �2 − 1�2/3 − 1	

�
1

2�3Nq̄2q̄3��2�3�1/3 + i� + i��1 − �2�2/3 + �1 − �3�2/3 + ��2 + �3 − 1�2/3 − 1	
, �B9�
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where �1,2=
�1,2

�m
and q̄1,2=

q�1,2�y

���1,2�1/3 . Compared to the two-loop diagram given by Eq. �3.7� this one contains an additional
integral over �3 and additional denominator.

We are interested in the corrections to the universal nonanalytic term in the self-energy. Accordingly, we introduce, as
before, �2�=1−�2 and set �2� ,�1�1. We then obtain

�3�k,�m� = i�m
2/3�0

1/3� �3

2�
�3�

−�

� dq̄1dq̄2dq̄3�q̄1q̄2q̄3�
�1 + �q̄1�3��1 + �q̄2�3��1 + �q̄3�3�

�
0

1

d�2��
�2�

1 d�1

�1
1/3�

�2�

1 d�3

�3
1/3

�
1

− �2�3i�Nq̄1q̄2�1
1/3 + � + ��2�

2/3 + ��1 − �2��
2/3	

1

− �2�3i�Nq̄2q̄3�3
1/3 + � + ��2�

2/3 + ��3 − �2��
2/3	

. �B10�

a. N=0

Integrating over dimensionless momenta q̄1 and q̄2 in Eq.
�A10� and setting N=0 we obtain

�3�k,�m� =
4

9
i�m

2/3�0
1/3�

0

1 d�1

�1
1/3�

0

�1

d�2�

�
1

� + ��2�
2/3 + ��1 − �2��

2/3	
2

3
�

�2�

1 d�3

�3
1/3

�
1

� + ��2�
2/3 + ��3 − �2��

2/3	
. �B11�

The first line is the expression for one of the two two-loop
self-energy diagram and the second line is the extra piece
which represents the vertex correction. We see that the inte-
gral over �3 is logarithmical. Using the fact that typical
��2


�3/2, we obtain, with logarithmical accuracy,

�3�k,�m� = �2�k,�m�ln
1

�
. �B12�

This is the result that we cited in the main text.

b. Finite N

At a finite N and ��N2, the logarithmic divergence of
the integral over �3 in Eq. �B11� is cut by N2 instead of �
and we have

�3�k,�m� = �2�k,�m�ln
1

N2 . �B13�

APPENDIX C: FERMIONS AT THE HALF-FILLED
LANDAU LEVEL

In this appendix we give details of the calculations for a
model of fermions interacting with a bosonic field whose
static propagator scales as 1 / �q�.

1. Real-space propagator for Nš1

The derivation of the form of G�r , t� is analogous to the
derivation of Eq. �A8�. Using the self-energy ���m�
= i
�m ln��0 /�m� and converting it to real frequencies, we
obtain, with logarithmical accuracy,

G�r,t� = �
−�

� d�

2�
� dk

�2��2

exp�ikr − i�t�

� ln��0/�� − �k

. �C1�

Introducing new variables x=
� ln��0 /�� /�k, y=�kr /vF and
using the fact that

�
0

�

dy cos�a + y�e−by =
b cos a − sin a

1 + b2 , b � 0, �C2�

we arrive at Eq. �4.6�.

2. Two-loop diagram

The analytical expression for �2�q ,�m� has the same
structure as Eq. �B1� and after the integration over x compo-
nent of momenta reduces to

�2�k,�m� = − 
2�
0

�m

d�1�
�m−�1

�m

d�2� dq1dq2�q1q2�
��̃�1 + �q1�2���̃�2 + �q2�2�

�
1

�Nq1q2/m� − �k + ����m − �1� + ���m − �2� + ���1 + �2 − �m�	
, �C3�
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where �̃=� / �mu�=4�
m and q1,2 are y components of run-
ning momenta bounded by �q1,2��kF.

a. Large N expansion

As in the previous case, we expand the denominator in
Eq. �C3� in powers of �1 /N��1 and cut the logarithms by
1 /N. To leading order in 1 /N, we have

�2�k,�m� = � ln2 N

4�2N2
�
0

�m d�1

�1
�

�m−�1

�m d�2

�2
�− �k + i
���m

− �1�ln� �0

�m − �1
� + ��m − �2�ln� �0

�m − �2
�

+ ��1 + �2 − �m�ln� �0

�1 + �2 − �m
�
� . �C4�

Using

�
0

�m d�1

�1
�

�m−�1

�m d�2

�2
=

�2

6
�C5�

and

�
0

�m d�1

�1
�

�m−�1

�m d�2

�2
���m − �1�ln� �0

�m − �1
� + ��m

− �2�ln� �0

�m − �2
� + ��1 + �2 − �m�ln� �0

�1 + �2 − �m
�


=
�2

6
�m ln��0/�m� , �C6�

and substituting Eqs. �C5� and �C6� into Eq. �3.2�, we obtain
Eq. �4.4� of the main text.

b. Universal term in the expansion near the mass shell

As in Appendix B we introduce new dimensionless vari-
ables q̄1=q1 /��̃�1 and q̄2=q2 /��̃�2. The integration over q̄1
and q̄2 in Eq. �C3� is now confined to �q̄1,2�� ��0 /�1,2�1/2 and
Eq. �C3� becomes, after proper rescaling,

�2�k,�m� = i
�m�
0

1

d�1�
1−�1

1

d�2� dq̄1�q̄1�
1 + q̄1

2 � dq̄2�q̄2�
1 + q̄2

2

�
1

− iN���1�2q̄1q̄2 + �̃ ln��0/�m� + ��1 − �1�ln� 1

1 − �1

 + �1 − �2�ln� 1

1 − �2

 + ��1 + �2 − 1�ln� 1

�1 + �2 − 1

� ,

�C7�

where �1,2= ��1,2 /�m�, �= �1 /2���vF /u�, and �̃ is given by Eq. �4.3�.
As before, we expand �2 near the mass shell in powers of �̃ and search for a universal nonanalytical contributions from

�1
0 and �2
1 and vice versa. Restricting with the contribution from the first region and introducing �2�=1−�2�1, we
obtain

�2�k,�m� = i
�m�
0

1

d�2��
�2�

1

d�1� dq̄1�q̄1�
1 + q̄1

2 � dq̄2�q̄2�
1 + q̄2

2

1

− iN���1q̄1q̄2 + �̃ ln��0/�m� + �2� ln� 1

�2�
� + ��1 − �2��ln� 1

�1 − �2�
� .

�C8�

The integrals over q̄1 and q̄2 are confined to �q̄1��Q1= ��0 /�m�1/2�1 /�1�1/2 and �q̄2��Q2= ��0 /�m�1/2, respectively; the upper
limits of the integrals over �1 and �2� should not matter in this approximation.

A simple experimentation shows that the universal nonanalytic contribution to �2 appears already at first order in �̃.

Expanding Eq. �C8� in �̃ and integrating over q̄1 and q̄2 we obtain with the logarithmic accuracy

�2�k,�m� = − i
�m�̃ ln2��0/�m��
�0

1

d�1�
�0

�1

d�2�
ln�1/�2��

��2� ln� 1

�2�
� + ��1 − �2��ln� 1

�1 − �2�
�
2

= − i
�m�̃ ln2��0/�m�ln ln
1

�0
. �C9�

The lower cutoff �0 is defined by �0 ln�1 /�0�
 �̃ ln �0 /�m at N=0 and by �0 ln2�1 /�0�
N2 ln4 N at N2��̃ �up to extra
logarithms�. This leads to Eqs. �4.11� and �4.17� in the main text.

TIGRAN A. SEDRAKYAN AND ANDREY V. CHUBUKOV PHYSICAL REVIEW B 79, 115129 �2009�

115129-14



1 P. A. Lee, Phys. Rev. Lett. 63, 680 �1989�.
2 B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B 50,

14048 �1994�.
3 A. V. Chubukov, C. Pépin, and J. Rech, Phys. Rev. Lett. 92,

147003 �2004�; J. Rech, C. Pépin, and A. V. Chubukov, Phys.
Rev. B 74, 195126 �2006�; A. V. Chubukov, A. M. Finkelstein,
R. Haslinger, and D. K. Morr, Phys. Rev. Lett. 90, 077002
�2003�; A. V. Chubukov, Phys. Rev. B 71, 245123 �2005�.

4 D. L. Maslov and A. V. Chubukov, Phys. Rev. B 79, 075112
�2009�.

5 M. Dzero and L. P. Gorkov, Phys. Rev. B 69, 092501 �2004�.
6 V. Oganesyan, S. A. Kivelson, and E. Fradkin, Phys. Rev. B 64,

195109 �2001�.
7 W. Metzner, D. Rohe, and S. Andergassen, Phys. Rev. Lett. 91,

066402 �2003�; L. Dell’Anna and W. Metzner, ibid. 98, 136402
�2007�.

8 M. J. Lawler, D. G. Barci, V. Fernandez, E. Fradkin, and L.
Oxman, Phys. Rev. B 73, 085101 �2006�; D. G. Barci and L. E.
Oxman, ibid. 67, 205108 �2003�.

9 H. Y. Kee and Y. B. Kim, J. Phys.: Condens. Matter 16, 3139
�2004�.

10 I. J. Pomeranchuk, Sov. Phys. JETP 8, 361 �1958�.
11 D. V. Khveshchenko and P. C. E. Stamp, Phys. Rev. Lett. 71,

2118 �1993�.
12 A. V. Chubukov and D. V. Khveshchenko, Phys. Rev. Lett. 97,

226403 �2006�.
13 L. B. Ioffe, D. Lidsky, and B. L. Altshuler, Phys. Rev. Lett. 73,

472 �1994�.
14 J. K. Jain, Phys. Rev. Lett. 63, 199 �1989�.
15 B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312

�1993�.
16 Ar. Abanov, A. Chubukov, and J. Schmalian, Adv. Phys. 52, 119

�2003�; Ar. Abanov and A. Chubukov, Phys. Rev. Lett. 93,
255702 �2004�.

17 B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B 52,
5563 �1995�.

FERMIONIC PROPAGATORS FOR TWO-DIMENSIONAL… PHYSICAL REVIEW B 79, 115129 �2009�

115129-15


